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FOR SKIDS MADE OF VARIOUS METALS ON CONCRETE,
ASPHALT, AND LAKEBED SURFACES

By Robert C. Dreher and Sidney A. Batterson
SUMMARY

An investigation was made to obtain the coefficients of friction
and the wear characteristics for skids made of various metals. Simu-
lated landings and slideouts were made at forward speeds up to 180 feet
per second on concrete, asphalt, and lakebed surfaces. The results
indicate that coefficients of friction developed by wire-brush skids
and some of the softer metal skids compare favorably with those devel-
oped by braked wheels with rubber tires; however, the wire-brush skids
and the skids made of the softer metals showed the greatest amount of
wear.

INTRODUCTION

One cf the problems to be considered for recoverable reentry vehi-
cles as well as conventional aircraft is that of providing a safe
landing. A landing gear must provide alrplane stability during the
landing run and be capable of stopping the alrcraft within a reasonable
distance. Temperature, welght, and reliability are some of the factors
affecting the design of a satisfactory landing gear. The environmental
temperatures reached by a reentry vehicle are fairly high and the tem-
peratures reached during braking of conventional aircraft are becoming
more critical as higher energy systems are developed. The conventional
braked wheel with a rubber tire is becoming less suitable for high-
energy aircraft and impractical for vehicles which reach high tempera-
tures during reentry. One solution to the problem of high temperatures
produced during braking of conventional alrcraft is to increase the
size of the brakes. Some designs also provide for cooling or dissi-
pating the heat generated during braking. However, most of these solu-
tions necessarily increase the weight of the vehicle. In some cases
the welght penalty would be ob jectionable, especially in a reentry
vehicle. These various limiting factors have stimilated investigations
of alternate types of landing-gear design.



One of the most desirable alternate designs uses sklds for tihe
ground-contact members. They can be fabricated from materials capable
of withstanding the environment of a reentry vehlcle and may provide
sulitable stability and deceleration during the landing run or slideout.
In the past, skls have been used on conventional aircraft for opera-
tions from snow or water and appear to be suitable for these operations.
More recently, skids have been used on the X-15 hypersonic research
vehicle. This vehicle will at least approach many of the reentry and
landing problems associated with high-energy vehicles. Skids have also
been used on the X-2, an experimental hypersonic aircraft, and on recov-
erable drones and missiles. The use of skids on these vehicles has been
limited mostly to landings on a dry lakebed several miles long, and decel-
eration and skid life have proved to be adequate under these conditions.
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Reentry vehicles may not always have a long dry lakebed for
landings and may be required to use available landing strips which may
be as short as 5,000 feet and consist of several types of landing sur-
faces. Therefore, if skids are to be used in a landing-gear design,

they must be developed so that they are capable of landing on all types
of conventional runway surfaces.

Studlies of the development of such skids were made at the Langley
landing-loads track. Simulated landings and slideouts using skids
fabricated of various metals were made on concrete, two types of asphalt,
and a simulated lakebed surface. A limited number of these landings
wei'e made on wet concrete and asphalt surfaces and also with the skids
preheated to approximately l,OOOO F above the ambient temperature. It

is the purpose of this paper to present the results obtained from these
investigations.

APPARATUS AND TEST PROCEDURE

Simulated landings and slideout tests were made with the skids by
using the carriage at the Langley landing-loads track. This carriage
is propelled to the desired horizontal velocity by means of a hydraulic
Jet catapult. The operation of this facility is described in refer-
ence 1. A drop linkage was attached to the carriage as shown in fig-
ure 1 and was similar to that descrlbed in reference 2. A fighter air-
plane nose landing gear was attached to the drop linkage, and a fixture
to accommodate shoe skids was mounted on the axle of the nose gear
(fig. 1). Skids fabricated of different materials were fastened to
this fixture as shown in figure 2. The carriage was propelled along
the runway at various forward speeds, and at a preselected point the
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skid was allowed to land on the runway and slide for 400 to 600 feet.
The skid fixture was free to move several degrees in the pitch and roll
directions but was restrained in the yaw direction.

The static vertical load on the skids was 2,150 pounds. Simulated
landings and slideouts were made at forward speeds up to 180 feet per
second on concrete, asphalt, and simulated laskebed surfaces. The con-
crete surface was similar to a standard concrete runway. The asphalt
surface was 600 feet long; the first 400 feet had a smooth sand finish
and the remaining 200 feet had a considerably rougher finish, having
been surfaced with a mix containing relatively large stone aggregate.
The aggregate for the smooth asphalt was no larger than that which could
pass through a No. 10 sieve. The aggregate for the rough asphalt was
such that 100 percent could pass through a l-inch sieve, 95 to 100 per-
cent through a B/H-inch sieve, 60 to 80 percent through a 3/8-inch sieve,
40 to 60 percent through a No. 4 sieve, 20 to 40 percent through a
No. 10 sieve, and 3 to 10 percent through a No. 80 sieve. A comparison
of the two surfaces is shcwn by the photographs in figure 3.

The simulated lakebed surface shown in figure 4 was approximately
400 feet long, 3 feet wide, and 3 inches deep. Wood retaining members
were fastened to the concrete surface along the sidec of the bed. The
lakebed material was obtained locally and was compacted by wetting and
rolling until it was similar to a dry lakebed. The test to determine
when the surface was compacted sufficiently was made with a 15-pound
steel ball which-was 5 inches in diameter. The ball was dropped onto
the simulated lakebed from a height of T feet. If the indentation left
by the ball was 3 inches wide or less the bed was considered to be com-
pacted sufficiently for testing. A photograph of an indentation in the
lakebed surface made during a test 1s shown in figure 5.

The majority of the tests made on the concrete and asphalt surfaces
were made with the surfaces dry; however, a few tests were made with the
surfaces wet. The depth of the water was such that only the highest
irregularities of the surfaces protruded above the water. On the con-
crete surface some of the puddles reached a depth of 0.3 inch; however,
the asphalt surface had fewer irregularities and the puddles on tkis sur-
face did not exceed approximately 0.1 inch.

A few of the tests were made with the skids preheated to approxi-
mately 1,000° F above the ambient temperature. The method of heating
the skids is shown in figure 6. A burner consisting of a number of
openings in a tube, which was the length of the skids, was connected
to a pipe from a standard oxygen-acetylene welding unit. The burner
was placed under the skid and ignited. When the skid had reached the
desired temperature as determined by a thermocouple attached to the
skid, the burner was withdrawn and the test was made. Three thermo-
couples were mounted on the skid at the positions shown by the sketch



in figure 7. Thermocouples were mounted on the center line of the skid
near the ends and at the center. As shown by thc sketch, the thermo-
couples were placed on the upper surface of the skid.

The skids were weighed before and after each landing test in order
to determine the amount of wear.

INSTRUMENTATION

Tne instrumentation was very similar to that described in refer-
ence 2. Accelerometers were used to measure accelerations of the upper
and lower masses in the vertical and drag directions. A slidewire indi-
cated the nose-gear strut deflection, and a load cell mounted in the
drag link of the nose gear gave a measurement of the drag load. By
using the measurements obtained from these instruments and the method
described in reference 2, the vertical and drag loads on the skid were
determined. From these loads the coefficient of friction between the
skid and the runway surface was determined. The output of the thermo-
couplcs was recorded directly by an oscillograph.

TEST SPECIMENS

In this investigation thirteen skids wcre tested. The contact sur-
face of the skids was approximately 4 inches wide and 24 inches long.
The wearing surface of the following skids was about l/h inch thick:
Beryllium copper, nickel, 1020 steel, 301 stainless steel, and titanium.
The skids of soft cermet, hard cermet, tungsten carbidc, molybdenum, and
coclumbium had the metal flame-plated on ~ base of Inconel X. One skid
consisted of a nickel-sheet shoe 0.060 inch thick with a steel mesh
between the shoe and the skid fixture which allowed the contacting sur-
face to bc more flexible as it slid over the runway surface.

The two skids shown in figure © have wire brushes as the contacting
surfaces. The wire is made of 3521 stainless steel having an ultimate
tensile strength of 293,000 pounds per square inch at room temperature.
This material is being used in aluminum mills at temperatures up to
1,000° F. One skid has a wire trim length of 2 ir ‘t.es and the other a
5-inch trim length.

RELIABILITY OF TEST RESULTS

Because of the equipment used for these tests it was necessary to
make each test over the same section of runway. In order to investigate
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the effect of repeated slideouts over the same portion of runway surface,
a 1020 stecel skid was selected as a control. It was the first skid
tested and was retested when inspection of the landing surface indicated
significant changes. Figure 9 shows the effect of the coefficient of
friction obtained during these tests of the 1020 steel skid on concrete
and both types of asphalt surface. The numbers by each data point indi-
cate the total number of runs that had been made on each surface when
that particular data point was obtained. It can be seen that for all
surfaces the earlier runs yielded higher friction coefficients, but the
actual difference is small. Data indicate that this effect is somewhat
greater for skids made of metals softer than steel and less for skids
of the harder materials.

RESULTE

Coefficient of Friction

When a skid slides over a surface, Jjunctions at the surfaces are
formed and sheared and, in addition, the harder surface asperities plow
out the softer material. These two actions, shcaring and plowing, are
the chief factors producing the resistance which determines the coeffi-
cient of fricticn.

The values of the ccefficient of frictlon obtained at various
forward speedc during simulated slideouts on dry concrete, asphalt,
and simulated laxebed surfaces for each of the skids used in this test
arc shoewn in fipure 10. The values obtained from tests of the skids on
the concrete surface are shown in figures 10(a) and 10(b). Values
cbtained with the copper, 1020 steel, and 3-inch-wire-brush skids on a
lakebed surface are also shown in figure lO(b). The values of the
coefficient cf friction cbtained on the asphalt surfaces are shown in
figure lO(c). In this figure the circular test-point symbols represent
the values cbtained on the smooth asphalt surface, whereas the square
symbcls represent those obtained on the large-aggregate asphalt surface.
It can be secen that, for the most part, the scatter of the data is small.

Skids on concrete surface.- The variation of the average coefficient
of friction with forward speed during slideout for the skids on a dry
concrete surface is shown in figure 11. These curves were obtalned by
fairing a line through the data points shown in figures 10(a) and 10(b).
Consequently, the coefficient of friction at a given forward speed 1is an
average value. Figure 11 shows that the coefficient of friction is
higher for the skids made of the softer metals and the wire-brush skids.
The coefficient of friction decreases with an increase in forward speed
for all skids tested. However, this decreasec 1s larger for the skids




made of the softer metals than it is for the skids made of harder metals
and for the wire-brush skids.

Skids on asphalt surface.- Figure 12(a) shows the variation of the
coeffieient of friction with forward speed for several skids on the
smocth asphalt surface and figure 12(b) gives the variation on the large-
aggregate asphalt surface. These curves were obtained also ty falring a
line through the data points shown in figure 10(c). This figure shows
agaln that the coefficient of friction 1s higher for the skids made of
the scfter metals and the wire brushes and that the coefficient deereases
with [orward cpeed. It can also be seen from figure 12 that the coeffi-
cient of friction for the sclid skids is higher on the smooth asphalt
surface than on the large-aggregate surface, whereas the reverse is indi-
cated for the wire-brush skid.

Skids on lakebed.- Difficulties in maintaining a stable lakebed
runway limited the number of tests made on this surface. The data
obtained using 1020 steel, copper, and wire-brush skids are shown in
figure 13. It can be seen that the coefficient of friction of the
copper skid on this surface is about the same as that of the steel skid
at approximately 40 feet per second; whereas, it was much higher on the
concrete surface. This result suggests that for a solld shoe-type skid
the ccefficient of friction on a lakebed surface is independent of the
skid material. It 1s believed that with solid skids all of the resist-
ance 1s produced as the skid shears and plows the lakebed surface, with
little or no shearing or plowing taking place on the skid.

The wire-brush skid developed a coefficient of frietion of about 0.6
which was the highest obtained during the tests. Here, too, the lakebed
produces practically all the resistance. The wire bristles were observed
to penetrate the lakebed to a greater depth than the solid skids. This
increased plowing of the lakebed is much greater and produces the higher
coefficient of friction.

Effect of runway surface.- The effect of the runway surface cn the
coeffieient of friction for several skids is shown in figure 1l4. The
veriation of the coefficient of friction with forward speed on a con-
crete surface, a smooth asphalt surface, and a large-aggregate asphalt
surface is presented. The variation obtained with the 1020 steel skid
on a simulated lakebed surface is also shown. It can be seen from this
figure that the ccefficlent of friction for the eopper skid is higher
on the concrete surface than on either of the asphalt surfaces, and thal
for the nickel and 1020 steel skids the coeffieient on the concrete sur-
face is about the same as that on the smooth asphalt surface and higher
than the value on the large-aggregate surface. For the skids made cf
harder mctals, tungsten carbide and hard cermet, the coefficient of
friction on the concrete surface is less than the coefficient cbtained
on the smocth asphalt surface but higher than that on the large-aggregate




asphalt surface. Figure 14 also shows that the coefficient of friction
obtained with the 3-inch-wire-brush skid on the concrete surface was
about midway between that obtained on the two asphalt surfaces. In
addition, this figure shows that the coefficlent of friction obtained

for the 1020 steel skid was higher on the lakebed surface than on any

of the other surfaces. At the higher forward speeds the coefficient

of friction for this skid on the lakebed is approximately 0.l higher than
it is on the large-aggregate asphalt surface and at the lower forward
speeds it 1is about 0.2 higher.

Effect of skid temperature.- A reentry vehicle will reach very high
temperatures as it enters the earth's atmosphere. 1In order to simulate
the temperature conditions expected to exist during landing of a reentry
vehicle equipped with skids, a limited number of tests were made with
skids preheated to approximately 1,000° F above ambient temperature.
Simulated slideouts were made at varlous forward speeds with the
1020 steel and nickel skids on concrete and asphalt surfaces and with
the hard cermet skid on the asphalt surfaces. The results of these
tests are shown in figure 15. It can be seen from the figure that
values of the coefficient of friction cobtained on the concrete surface
with the 1020 steel skid and the nickel skid at elevated temperatures
in general are lower than the average values obtained with the skids at
ambient temperature. On the asphalt surfaces there appears to be a
tendency for the values of the coefficient of friction obtained with the
1020 steel, nickel, and hard cermet skids at elevated temperatures to be
higher than the average values obtained with the skids unheated. 1In
addition, for the heated skids, the values obtained on the smooth asphalt
surface were about the same as those obtained on the large-aggregate
asphalt surface. Forward speed appeared to have less effect on the coef-
ficient of friction with the skids at elevated temperatures.

Time histories of the temperatures measured by thermocouples on the
1020 steel skid during two slideouts on the asphalt surface are shown in
figure 16. Thermocouples were mounted on the upper surface near the
front, center, and rear of the skid. The three curves in the upper part
of the figure represent the temperatures obtained at the three positions
along the skid during a slideout at 120 feet per second with the skid
preheated to approximately 1,000° F above the ambient temperature. The
zero value on the temperature scale of this figure is the ambient tem-
perature. It can be seen that the temperatures remained fairly constant
throughout the test. The curves in the Jower part of the figure represent
the temperatures obtainecd during a slideout on the asphalt runway at
160 feet per second with the 1020 skid unheated. These curves show that
heat is generated as the skid slides along the runway. In this particular
test the rise in temperature was 110° at the position near the rear of the
skid. It should be pointed out that the thermocouples measured the tem-
peratures on the upper surface of the skid; hence, the values of the



temperatures were determined by the amount of the heat that had flowed .
from the contacting surface to the thermocouples. The temperatures at

the contacting surface were probably much higher. Reference 3 shows that

for surfaces sliding under even moderate loads and at moderate speeds the
surface temperatures will reach very high values. The three symbols in

figure 16 are values of the temperatures measured at the three positions

along the skid several minutes after the test. It can be seen that the
temperatures have continued to increase since more of the heat has had

time to flow from the contacting surface to the thermocouples..

Since the asphalt surface was in a hot mix condition when it was
laid, it was believed that a heated skid might affect this type of sur-
face. This was investigated by heatring the 1020 steel skid to approxi-
mately 1,000° F above the ambient temperature and placing it on the
asphalt surface with a vertical load of 2,150 pounds. The skid was then
pushed along the surface for a few feet. It was found that the heated
skid had no significant effect on the asphalt surface. The coefficient
of friction obtained during the push run was approximately the same as
that obtained when the skid was pushed in a similar manner at ambient
temperature.
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Effect of wet runway.- In order to obtain some indication of the
effect a wet runway surface would have on the coefficient of friotion,
tests were made with the runway surfaces wet. These tests consisted
of one slideout each with the copper, nickel, 1020 steel, stalinless-
steel, and titanium skids on the concrete runway and three slideouts with
the 1020 steel skid on the asphalt surfaces. Figure 17 shows the results
of these tests. The lines in the figure represent the variation of the
coefficient of friction with forward speed with the skids on a dry sur-
face. The test-point symbols represent values of the coefficient of
friction obtained with the runway surface wet. It can be seen from the
figure that the coefficients of friction obtained with the copper,

1020 steel, and stainless-steel skids on the wet concrete surface are
somewhat lower than the average coefficients obtained on the dry con-
crete surface, while that obtained with the titanium skid is higher.
The coefficient of friction obtained with the 1020 steel skid on the
wet smooth asphalt surface is about the same as that obtained on the dry
smooth asphalt surface. However, the coefficient ohtained on the wet
large-aggregate surface is higher than the coefficient obtalned on the
dry large-aggregate asphalt surface. In addition, the data obtained on
the asphalt surfaces indicate that the coefficient of friction for the
1020 steel skid is about the same on the wet smooth asphalt surface as
it 1s on the wet large-aggregate surface.
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Wear of Skids

Wear of the skid 1s caused by the shearing of asperities from its
surface and the plowing out of the skid material by the surface over
which it slides. The speed of sliding, the strength of the skid material,
and the strength of the surface material are some of the factors which
affect the amount of skid wear. As mentioned previously, the amount of
wear of the skids used in this investigation was determined by weighing
the skids before and after each test.

Figure 18 shows the wear in pounds per foot of sliding for several
solid-metal skids on concrete and asphalt surfaces at various forward
speeds with a static vertical load of 2,150 pounds. The number near
each data point represents the total number of tests that had been made
on each surface at the time that the particular data point was obtained.
It can be seen that the wear was greater during the first tests than
during later tests. The general trend of the data indicates that the
wear increases with forward speed. This effect is more pronounced with
the skids made of the softer metals. As in the case with the coefficient
of friction, the forward speed has little effect on the wear of skids
made of the harder metals. No trend was indicated by the data obtained
with the wire-brush skids.

The relative wear of the skids in pounds per foot of sliding obtained
during tests on concrete and asphalt surfaces is shown by the bar graph in
figure 19. The values of the amount of wear for each skid are the average
values obtained from all the tests made on the skid. Therefore, this bar
graph is indicative only of the amount of wear per foot of sliding since
the effect of such variables as surface roughness and sliding speed is
included in the values. The forward speed in these tests ranged from
approximately 40 to 180 feet per second. Wear of the skids on the asphalt
surface was a result of sliding over both the smooth and the large-
aggregate asphalt surfaces. Thls figure shows that the wire-brush skids
and the solid skids made of the softer materials had the highest average
wear per foot of sliding. The amount of wear decreased as skids made of
the harder metals were used. It can be seen that the wear was higher on
the concrete surface than on the asphalt surface for all skids except
the tungsten carbide skid.

Figure 20 gives an indication of the amount of wear to be expected
for each skid for various sliding distances on concrete surfaces whereas
figure 21 glves the wear to be expected for several skids on asphalt sur-
faces under conditions similar to those described in this report. 1In
these figures the average value of the wear per foot of sliding for each
skid was used to obtain the curves. The curves are indicative of the
relative amount of material which would be necessary for various slide-
out distances for each of the materials tested.



10

Skids as Brakes

Wheel brakes are relied upon to provide the major portion of
deceleration during landings of most present-day alrcraft. However,
with increasing landing speeds and weights the kinetic energy to be
absorbed by the brakes becomes appreciable. Auxiliary deceleration
devices such as parabrakes and thrust reversers have been provided on
some alrcraft in order to ease the load on the wheel brakes and to keep
the landing-run distances within the limits of existing runways. The
data obtained during this skid investigation indicate that some type of
skid could be capable of producing a retarding force that would compete
favorably with wheel brakes in providing the major share of the decelera-
tion required during landing runs. Wheel brakes equipped with antiskid
devices are capable of developing an average coefficlient of friction of
0.3 to 0.4 during landing. It can be seen in figure 11 that the wire-
brush skids as well as some of the softer metal skids are capable of
producing coefficients of friction which compare favorably with those
developed by the braked wheel and rubber tire. Although conventional
wheels and brakes are necessary for taxiing, take-off, and directional
stability during the landing run, it appears possible that skids could
be utilized to provide a significant amount of deceleration during the
landing.

CONCLUSIONS

An investlgation has been made to determine the coefficients of
friction and wear characteristics for skids made of various metals on
concrete, asphalt, and lakebed surfaces. The principal conclusions
indicated by this investigation are as follows:

1. Wire-brush skids and skids made of the softer metals are capable
of developing coefficients of friction that compare favorably with those
developed by a braked wheel with rubber tire.

2. For a solid metal skid the coefficlent or friction on the lsake-
bed surface appears to be independent of the skid material.

3. The wire-brush skids and the skids made of the softer metals
showed the greatest amount of wear. The amount of wear was greater on
the concrete surface than on the asphalt surface.

Langley Research Center,
National Aeronautlics and Space Administration,
Langley Air Force Base, Va., October 18, 1901.
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Figure 2.- Shoe skid attached to skid fixture for testing.



14

(a) Large-aggregate surface. L-59-7644

(b) Smooth surface. L-59-7643 )

Figure 3.- Asphalt surfaces used in tests,
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Figure 7.- Sketch showing locations of thermocouples on skid.
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Figure 10.- Values of the coefficient of friction at various forward
speeds for several sklds on concrete, lakebed, and asphalt surfaces.
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Coefficient of friction
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Forward speed, fps

(b) Large-aggregate asphalt surface.

Figure 12.- Variation of coefficlient of friction with forward speed

for several skids on asphalt surfaces.
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Coefficient of friction
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Figure 1l4.- Effect of runway surface on coefficient of friction for
several skids.
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Figure 15.- Effect of heated skids on the coefficient of friction
on concrete and asphalt surfaces.
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Coefficient of friction
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Figure 17.- Effect of wet runway surfaces on the coefficient of
friction for several skids.
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Figure 18.- Wear of several skids in pounds per foot of sliding on

concrete and asphalt surfaces at various forward speeds.
vertical load, 2,150 pounds.

Static

Number by each data point indicates

total number of tests made on each surface when that particular
data point was obtained.
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Figure 19.- Average wear of skids on concrete and asphalt surfaces.
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